

免費預覽已結(jié)束,剩余5頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第二章 基本初等函數(shù)()2.1指數(shù)函數(shù)(1)根式的概念如果,且,那么叫做的次方根當是奇數(shù)時,的次方根用符號表示;當是偶數(shù)時,正數(shù)的正的次方根用符號表示,負的次方根用符號表示;0的次方根是0;負數(shù)沒有次方根式子叫做根式,這里叫做根指數(shù),叫做被開方數(shù)當為奇數(shù)時,為任意實數(shù);當為偶數(shù)時,根式的性質(zhì):;當為奇數(shù)時,;當為偶數(shù)時, (2)分數(shù)指數(shù)冪的概念正數(shù)的正分數(shù)指數(shù)冪的意義是:且0的正分數(shù)指數(shù)冪等于0正數(shù)的負分數(shù)指數(shù)冪的意義是:且0的負分數(shù)指數(shù)冪沒有意義 注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù)(3)分數(shù)指數(shù)冪的運算性質(zhì) (4)指數(shù)函數(shù)函數(shù)名稱指數(shù)函數(shù)定義0101函數(shù)且叫做指數(shù)函數(shù)圖象定義域值域過定點圖象過定點,即當時,奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對圖象的影響在第一象限內(nèi),越大圖象越高;在第二象限內(nèi),越大圖象越低2.2對數(shù)函數(shù)1、 對數(shù)的定義 若,則叫做以為底的對數(shù),記作,其中叫做底數(shù),叫做真數(shù)負數(shù)和零沒有對數(shù)對數(shù)式與指數(shù)式的互化:(2)幾個重要的對數(shù)恒等式,(3)常用對數(shù)與自然對數(shù)常用對數(shù):,即;自然對數(shù):,即(其中)(4)對數(shù)的運算性質(zhì) 如果,那么加法: 減法:數(shù)乘: 換底公式:(5)對數(shù)函數(shù)函數(shù)名稱對數(shù)函數(shù)定義函數(shù)且叫做對數(shù)函數(shù)圖象0101定義域值域過定點圖象過定點,即當時,奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高(6)反函數(shù)的概念設(shè)函數(shù)的定義域為,值域為,從式子中解出,得式子如果對于在中的任何一個值,通過式子,在中都有唯一確定的值和它對應(yīng),那么式子表示是的函數(shù),函數(shù)叫做函數(shù)的反函數(shù),記作,習慣上改寫成(7)反函數(shù)的求法確定反函數(shù)的定義域,即原函數(shù)的值域;從原函數(shù)式中反解出;將改寫成,并注明反函數(shù)的定義域(8)反函數(shù)的性質(zhì) 原函數(shù)與反函數(shù)的圖象關(guān)于直線對稱函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域若在原函數(shù)的圖象上,則在反函數(shù)的圖象上一般地,函數(shù)要有反函數(shù)則它必須為單調(diào)函數(shù)2.3冪函數(shù)(1)冪函數(shù)的定義 一般地,函數(shù)叫做冪函數(shù),其中為自變量,是常數(shù)(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無圖象冪函數(shù)是偶函數(shù)時,圖象分布在第一、二象限(圖象關(guān)于軸對稱);是奇函數(shù)時,圖象分布在第一、三象限(圖象關(guān)于原點對稱);是非奇非偶函數(shù)時,圖象只分布在第一象限 過定點:所有的冪函數(shù)在都有定義,并且圖象都通過點 單調(diào)性:如果,則冪函數(shù)的圖象過原點,并且在上為增函數(shù)如果,則冪函數(shù)的圖象在上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸奇偶性:當為奇數(shù)時,冪函數(shù)為奇函數(shù),當為偶數(shù)時,冪函數(shù)為偶函數(shù)當(其中互質(zhì),和),若為奇數(shù)為奇數(shù)時,則是奇函數(shù),若為奇數(shù)為偶數(shù)時,則是偶函數(shù),若為偶數(shù)為奇數(shù)時,則是非奇非偶函數(shù)圖象特征:冪函數(shù),當時,若,其圖象在直線下方,若,其圖象在直線上方,當時,若,其圖象在直線上方,若,其圖象在直線下方例1已知求解:例2求函數(shù)的單調(diào)區(qū)間.解:令,則為增函數(shù),當t6,即x1時,y為關(guān)于t的增函數(shù),當t6,即x1時,y為關(guān)于t的減函數(shù)函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間為例3已知在0,1上是的減函數(shù),則的取值范圍是解:是由,復合而成,又0在0,1上是的減函數(shù),由復合函數(shù)關(guān)系知應(yīng)為增函數(shù),1又由于 在0,1上時 有意義,又是減函數(shù),1時,取最小值是0即可,2綜上可知所求的取值范圍是12例4已知函數(shù).(1)當時恒有意義,求實數(shù)的取值范圍.(2)是否存在這樣的實數(shù)使得函數(shù)在區(qū)間1,2上為減函數(shù),并且最大值為1,如果存在,試求出的值;如果不存在,請說明理由.解:(1)由假設(shè),0,對一切恒成立,顯然,函數(shù)g(x)= 在0,2上為減函數(shù),從而g(2)0得到的取值范圍是(0,1)(1,)(2)假設(shè)存在這樣的實數(shù),由題設(shè)知,即1此時當時,沒有意義,故這樣的實數(shù)不存在.例5已知函數(shù)f(x)=, 其中為常數(shù),若當x(, 1時, f(x)有意義,求實數(shù)a的取值范圍.解:0, 且a2a+1=(a)2+0, 1+2x+4xa0, a,當x(, 1時, y=與y=都是減函數(shù), y=在(, 1上是增函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 村民就業(yè)問題的現(xiàn)狀與挑戰(zhàn)分析
- 廣東省湛江雷州市2024年化學九上期末復習檢測模擬試題含解析
- 江蘇省無錫市錫山區(qū)錫東片2025屆化學九上期末質(zhì)量檢測模擬試題含解析
- 河北滄州泊頭市蘇屯初級中學2024年七上數(shù)學期末教學質(zhì)量檢測模擬試題含解析
- 江蘇省常州市溧陽市2025屆八上數(shù)學期末達標測試試題含解析
- 智能物流產(chǎn)業(yè)發(fā)展及技術(shù)創(chuàng)新研究報告
- 2025至2030靜脈留置針行業(yè)項目調(diào)研及市場前景預測評估報告
- 寫字樓消防通道保潔要求
- 2025至2030數(shù)字金融行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國自動滴咖啡機行業(yè)市場占有率及投資前景評估規(guī)劃報告
- 實驗室培育鉆石行業(yè)技術(shù)發(fā)展趨勢報告
- 2025年領(lǐng)英大制造行業(yè)人才全球化報告-馬來西亞篇
- 專題:閱讀理解 30篇 中考英語高分提升之新題速遞第二輯【含答案+解析】
- 企業(yè)面試題目和答案大全
- 抖音房產(chǎn)直播課件
- 2025至2030中國近視眼治療儀市場競爭力剖析及企業(yè)經(jīng)營形勢分析報告
- 2025年北京市高考英語試卷真題(含答案解析)
- 日本所有番號分類
- 國際壓力性損傷-潰瘍預防和治療臨床指南(2025年版)解讀課件
- 降低手術(shù)患者術(shù)中低體溫發(fā)生率
- 患者跌倒墜床風險評估流程防范措施
評論
0/150
提交評論