




已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
海量數(shù)據(jù)Bloom filter適用范圍:可以用來(lái)實(shí)現(xiàn)數(shù)據(jù)字典,進(jìn)行數(shù)據(jù)的判重,或者集合求交集.當(dāng)hash函數(shù)個(gè)數(shù)k=(ln2)*(m/n)時(shí)錯(cuò)誤率最小; m應(yīng)該=nlg(1/E)*lge;Hashing適用范圍:快速查找,刪除的基本數(shù)據(jù)結(jié)構(gòu),通常需要總數(shù)據(jù)量可以放入內(nèi)存Bit-map適用范圍:可進(jìn)行數(shù)據(jù)的快速查找,判重,刪除,一般來(lái)說(shuō)數(shù)據(jù)范圍是int的10倍以下堆適用范圍:海量數(shù)據(jù)前n大,并且n比較小,堆可以放入內(nèi)存倒排索引適用范圍:搜索引擎,關(guān)鍵字查詢外排序適用范圍:大數(shù)據(jù)的排序,去重基本原理及要點(diǎn):外排序的歸并方法,置換選擇 敗者樹原理,最優(yōu)歸并樹Trie適用范圍:數(shù)據(jù)量大,重復(fù)多,但是數(shù)據(jù)種類小可以放入內(nèi)存基本原理及要點(diǎn):實(shí)現(xiàn)方式,節(jié)點(diǎn)孩子的表示方式分布式處理適用范圍:數(shù)據(jù)量大,但是數(shù)據(jù)種類小可以放入內(nèi)存基本原理及要點(diǎn):將數(shù)據(jù)交給不同的機(jī)器去處理,數(shù)據(jù)劃分,結(jié)果歸約。何謂海量數(shù)據(jù)處理? 所謂海量數(shù)據(jù)處理,其實(shí)很簡(jiǎn)單,海量,海量,何謂海量,就是數(shù)據(jù)量太大,所以導(dǎo)致要么是無(wú)法在較短時(shí)間內(nèi)迅速解決,要么是數(shù)據(jù)太大,導(dǎo)致無(wú)法一次性裝入內(nèi)存。 那解決辦法呢?針對(duì)時(shí)間,我們可以采用巧妙的算法搭配合適的數(shù)據(jù)結(jié)構(gòu),如Bloom filter/Hash/bit-map/堆/數(shù)據(jù)庫(kù)或倒排索引/trie/,針對(duì)空間,無(wú)非就一個(gè)辦法:大而化?。悍侄沃?hash映射,你不是說(shuō)規(guī)模太大嘛,那簡(jiǎn)單啊,就把規(guī)模大化為規(guī)模小的,各個(gè)擊破不就完了嘛。 至于所謂的單機(jī)及集群?jiǎn)栴},通俗點(diǎn)來(lái)講,單機(jī)就是處理裝載數(shù)據(jù)的機(jī)器有限(只要考慮cpu,內(nèi)存,硬盤的數(shù)據(jù)交互),而集群,機(jī)器有多輛,適合分布式處理,并行計(jì)算(更多考慮節(jié)點(diǎn)和節(jié)點(diǎn)間的數(shù)據(jù)交互)。 再者,通過(guò)本blog內(nèi)的有關(guān)海量數(shù)據(jù)處理的文章,我們已經(jīng)大致知道,處理海量數(shù)據(jù)問(wèn)題,無(wú)非就是:分而治之/hash映射 + hash統(tǒng)計(jì) + 堆/快速/歸并排序; 雙層桶劃分 Bloom filter/Bitmap; Trie樹/數(shù)據(jù)庫(kù)/倒排索引; 外排序; 分布式處理之Hadoop/Mapreduce。 本文接下來(lái)的部分,便針對(duì)這6種方法模式結(jié)合對(duì)應(yīng)的海量數(shù)據(jù)處理面試題分別具體闡述。處理海量數(shù)據(jù)問(wèn)題之六把密匙密匙一、分而治之/Hash映射 + Hash統(tǒng)計(jì) + 堆/快速/歸并排序1、海量日志數(shù)據(jù),提取出某日訪問(wèn)百度次數(shù)最多的那個(gè)IP。 既然是海量數(shù)據(jù)處理,那么可想而知,給我們的數(shù)據(jù)那就一定是海量的。針對(duì)這個(gè)數(shù)據(jù)的海量,我們?nèi)绾沃帜?對(duì)的,無(wú)非就是分而治之/hash映射 + hash統(tǒng)計(jì) + 堆/快速/歸并排序,說(shuō)白了,就是先映射,而后統(tǒng)計(jì),最后排序: 分而治之/hash映射:針對(duì)數(shù)據(jù)太大,內(nèi)存受限,只能是:把大文件化成(取模映射)小文件,即16字方針:大而化小,各個(gè)擊破,縮小規(guī)模,逐個(gè)解決 hash統(tǒng)計(jì):當(dāng)大文件轉(zhuǎn)化了小文件,那么我們便可以采用常規(guī)的Hashmap(ip,value)來(lái)進(jìn)行頻率統(tǒng)計(jì)。 堆/快速排序:統(tǒng)計(jì)完了之后,便進(jìn)行排序(可采取堆排序),得到次數(shù)最多的IP。 具體而論,則是: “首先是這一天,并且是訪問(wèn)百度的日志中的IP取出來(lái),逐個(gè)寫入到一個(gè)大文件中。注意到IP是32位的,最多有個(gè)232個(gè)IP。同樣可以采用映射的方法,比如模1000,把整個(gè)大文件映射為1000個(gè)小文件,再找出每個(gè)小文中出現(xiàn)頻率最大的IP(可以采用Hash_map進(jìn)行頻率統(tǒng)計(jì),然后再找出頻率最大的幾個(gè))及相應(yīng)的頻率。然后再在這1000個(gè)最大的IP中,找出那個(gè)頻率最大的IP,即為所求。”-十道海量數(shù)據(jù)處理面試題與十個(gè)方法大總結(jié)。2、搜索引擎會(huì)通過(guò)日志文件把用戶每次檢索使用的所有檢索串都記錄下來(lái),每個(gè)查詢串的長(zhǎng)度為1-255字節(jié)。 假設(shè)目前有一千萬(wàn)個(gè)記錄(這些查詢串的重復(fù)度比較高,雖然總數(shù)是1千萬(wàn),但如果除去重復(fù)后,不超過(guò)3百萬(wàn)個(gè)。一個(gè)查詢串的重復(fù)度越高,說(shuō)明查詢它的用戶越多,也就是越熱門。),請(qǐng)你統(tǒng)計(jì)最熱門的10個(gè)查詢串,要求使用的內(nèi)存不能超過(guò)1G。 由上面第1題,我們知道,數(shù)據(jù)大則劃為小的,但如果數(shù)據(jù)規(guī)模比較小,能一次性裝入內(nèi)存呢?比如這第2題,雖然有一千萬(wàn)個(gè)Query,但是由于重復(fù)度比較高,因此事實(shí)上只有300萬(wàn)的Query,每個(gè)Query255Byte,因此我們可以考慮把他們都放進(jìn)內(nèi)存中去,而現(xiàn)在只是需要一個(gè)合適的數(shù)據(jù)結(jié)構(gòu),在這里,Hash Table絕對(duì)是我們優(yōu)先的選擇。所以我們摒棄分而治之/hash映射的方法,直接上hash統(tǒng)計(jì),然后排序。So,hash統(tǒng)計(jì):先對(duì)這批海量數(shù)據(jù)預(yù)處理(維護(hù)一個(gè)Key為Query字串,Value為該Query出現(xiàn)次數(shù)的HashTable,即Hashmap(Query,Value),每次讀取一個(gè)Query,如果該字串不在Table中,那么加入該字串,并且將Value值設(shè)為1;如果該字串在Table中,那么將該字串的計(jì)數(shù)加一即可。最終我們?cè)贠(N)的時(shí)間復(fù)雜度內(nèi)用Hash表完成了統(tǒng)計(jì); 堆排序:第二步、借助堆這個(gè)數(shù)據(jù)結(jié)構(gòu),找出Top K,時(shí)間復(fù)雜度為NlogK。即借助堆結(jié)構(gòu),我們可以在log量級(jí)的時(shí)間內(nèi)查找和調(diào)整/移動(dòng)。因此,維護(hù)一個(gè)K(該題目中是10)大小的小根堆,然后遍歷300萬(wàn)的Query,分別和根元素進(jìn)行對(duì)比所以,我們最終的時(shí)間復(fù)雜度是:O(N) + N*O(logK),(N為1000萬(wàn),N為300萬(wàn))。 別忘了這篇文章中所述的堆排序思路:“維護(hù)k個(gè)元素的最小堆,即用容量為k的最小堆存儲(chǔ)最先遍歷到的k個(gè)數(shù),并假設(shè)它們即是最大的k個(gè)數(shù),建堆費(fèi)時(shí)O(k),并調(diào)整堆(費(fèi)時(shí)O(logk)后,有k1k2.kmin(kmin設(shè)為小頂堆中最小元素)。繼續(xù)遍歷數(shù)列,每次遍歷一個(gè)元素x,與堆頂元素比較,若xkmin,則更新堆(用時(shí)logk),否則不更新堆。這樣下來(lái),總費(fèi)時(shí)O(k*logk+(n-k)*logk)=O(n*logk)。此方法得益于在堆中,查找等各項(xiàng)操作時(shí)間復(fù)雜度均為logk?!?第三章續(xù)、Top K算法問(wèn)題的實(shí)現(xiàn)。 當(dāng)然,你也可以采用trie樹,關(guān)鍵字域存該查詢串出現(xiàn)的次數(shù),沒(méi)有出現(xiàn)為0。最后用10個(gè)元素的最小推來(lái)對(duì)出現(xiàn)頻率進(jìn)行排序。3、有一個(gè)1G大小的一個(gè)文件,里面每一行是一個(gè)詞,詞的大小不超過(guò)16字節(jié),內(nèi)存限制大小是1M。返回頻數(shù)最高的100個(gè)詞。 由上面那兩個(gè)例題,分而治之 + hash統(tǒng)計(jì) + 堆/快速排序這個(gè)套路,我們已經(jīng)開始有了屢試不爽的感覺(jué)。下面,再拿幾道再多多驗(yàn)證下。請(qǐng)看此第3題:又是文件很大,又是內(nèi)存受限,咋辦?還能怎么辦呢?無(wú)非還是:分而治之/hash映射:順序讀文件中,對(duì)于每個(gè)詞x,取hash(x)%5000,然后按照該值存到5000個(gè)小文件(記為x0,x1,.x4999)中。這樣每個(gè)文件大概是200k左右。如果其中的有的文件超過(guò)了1M大小,還可以按照類似的方法繼續(xù)往下分,直到分解得到的小文件的大小都不超過(guò)1M。 hash統(tǒng)計(jì):對(duì)每個(gè)小文件,采用trie樹/hash_map等統(tǒng)計(jì)每個(gè)文件中出現(xiàn)的詞以及相應(yīng)的頻率。 堆/歸并排序:取出出現(xiàn)頻率最大的100個(gè)詞(可以用含100個(gè)結(jié)點(diǎn)的最小堆),并把100個(gè)詞及相應(yīng)的頻率存入文件,這樣又得到了5000個(gè)文件。最后就是把這5000個(gè)文件進(jìn)行歸并(類似于歸并排序)的過(guò)程了。4、海量數(shù)據(jù)分布在100臺(tái)電腦中,想個(gè)辦法高效統(tǒng)計(jì)出這批數(shù)據(jù)的TOP10。 此題與上面第3題類似,堆/歸并排序:在每臺(tái)電腦上求出TOP10,可以采用包含10個(gè)元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我們首先取前10個(gè)元素調(diào)整成最小堆,如果發(fā)現(xiàn),然后掃描后面的數(shù)據(jù),并與堆頂元素比較,如果比堆頂元素大,那么用該元素替換堆頂,然后再調(diào)整為最小堆。最后堆中的元素就是TOP10大。 求出每臺(tái)電腦上的TOP10后,然后把這100臺(tái)電腦上的TOP10組合起來(lái),共1000個(gè)數(shù)據(jù),再利用上面類似的方法求出TOP10就可以了。5、有10個(gè)文件,每個(gè)文件1G,每個(gè)文件的每一行存放的都是用戶的query,每個(gè)文件的query都可能重復(fù)。要求你按照query的頻度排序。 直接上:hash映射:順序讀取10個(gè)文件,按照hash(query)%10的結(jié)果將query寫入到另外10個(gè)文件(記為)中。這樣新生成的文件每個(gè)的大小大約也1G(假設(shè)hash函數(shù)是隨機(jī)的)。 hash統(tǒng)計(jì):找一臺(tái)內(nèi)存在2G左右的機(jī)器,依次對(duì)用hash_map(query, query_count)來(lái)統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù)。注:hash_map(query,query_count)是用來(lái)統(tǒng)計(jì)每個(gè)query的出現(xiàn)次數(shù),不是存儲(chǔ)他們的值,出現(xiàn)一次,則count+1。 堆/快速/歸并排序:利用快速/堆/歸并排序按照出現(xiàn)次數(shù)進(jìn)行排序。將排序好的query和對(duì)應(yīng)的query_cout輸出到文件中。這樣得到了10個(gè)排好序的文件(記為)。對(duì)這10個(gè)文件進(jìn)行歸并排序(內(nèi)排序與外排序相結(jié)合)。 除此之外,此題還有以下兩個(gè)方法: 方案2:一般query的總量是有限的,只是重復(fù)的次數(shù)比較多而已,可能對(duì)于所有的query,一次性就可以加入到內(nèi)存了。這樣,我們就可以采用trie樹/hash_map等直接來(lái)統(tǒng)計(jì)每個(gè)query出現(xiàn)的次數(shù),然后按出現(xiàn)次數(shù)做快速/堆/歸并排序就可以了。 方案3:與方案1類似,但在做完hash,分成多個(gè)文件后,可以交給多個(gè)文件來(lái)處理,采用分布式的架構(gòu)來(lái)處理(比如MapReduce),最后再進(jìn)行合并。6、 給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url? 可以估計(jì)每個(gè)文件安的大小為5G64=320G,遠(yuǎn)遠(yuǎn)大于內(nèi)存限制的4G。所以不可能將其完全加載到內(nèi)存中處理??紤]采取分而治之的方法。分而治之/hash映射:遍歷文件a,對(duì)每個(gè)url求取,然后根據(jù)所取得的值將url分別存儲(chǔ)到1000個(gè)小文件(記為)中。這樣每個(gè)小文件的大約為300M。遍歷文件b,采取和a相同的方式將url分別存儲(chǔ)到1000小文件中(記為)。這樣處理后,所有可能相同的url都在對(duì)應(yīng)的小文件()中,不對(duì)應(yīng)的小文件不可能有相同的url。然后我們只要求出1000對(duì)小文件中相同的url即可。 hash統(tǒng)計(jì):求每對(duì)小文件中相同的url時(shí),可以把其中一個(gè)小文件的url存儲(chǔ)到hash_set中。然后遍歷另一個(gè)小文件的每個(gè)url,看其是否在剛才構(gòu)建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。7、怎么在海量數(shù)據(jù)中找出重復(fù)次數(shù)最多的一個(gè)? 方案1:先做hash,然后求模映射為小文件,求出每個(gè)小文件中重復(fù)次數(shù)最多的一個(gè),并記錄重復(fù)次數(shù)。然后找出上一步求出的數(shù)據(jù)中重復(fù)次數(shù)最多的一個(gè)就是所求(具體參考前面的題)。8、上千萬(wàn)或上億數(shù)據(jù)(有重復(fù)),統(tǒng)計(jì)其中出現(xiàn)次數(shù)最多的錢N個(gè)數(shù)據(jù)。 方案1:上千萬(wàn)或上億的數(shù)據(jù),現(xiàn)在的機(jī)器的內(nèi)存應(yīng)該能存下。所以考慮采用hash_map/搜索二叉樹/紅黑樹等來(lái)進(jìn)行統(tǒng)計(jì)次數(shù)。然后就是取出前N個(gè)出現(xiàn)次數(shù)最多的數(shù)據(jù)了,可以用第2題提到的堆機(jī)制完成。9、一個(gè)文本文件,大約有一萬(wàn)行,每行一個(gè)詞,要求統(tǒng)計(jì)出其中最頻繁出現(xiàn)的前10個(gè)詞,請(qǐng)給出思想,給出時(shí)間復(fù)雜度分析。 方案1:這題是考慮時(shí)間效率。用trie樹統(tǒng)計(jì)每個(gè)詞出現(xiàn)的次數(shù),時(shí)間復(fù)雜度是O(n*le)(le表示單詞的平準(zhǔn)長(zhǎng)度)。然后是找出出現(xiàn)最頻繁的前10個(gè)詞,可以用堆來(lái)實(shí)現(xiàn),前面的題中已經(jīng)講到了,時(shí)間復(fù)雜度是O(n*lg10)。所以總的時(shí)間復(fù)雜度,是O(n*le)與O(n*lg10)中較大的哪一個(gè)。密匙二、雙層桶劃分雙層桶劃分-其實(shí)本質(zhì)上還是分而治之的思想,重在“分”的技巧上!適用范圍:第k大,中位數(shù),不重復(fù)或重復(fù)的數(shù)字基本原理及要點(diǎn):因?yàn)樵胤秶艽?,不能利用直接尋址表,所以通過(guò)多次劃分,逐步確定范圍,然后最后在一個(gè)可以接受的范圍內(nèi)進(jìn)行。可以通過(guò)多次縮小,雙層只是一個(gè)例子。擴(kuò)展:?jiǎn)栴}實(shí)例: 1).2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù)的個(gè)數(shù),內(nèi)存空間不足以容納這2.5億個(gè)整數(shù)。有點(diǎn)像鴿巢原理,整數(shù)個(gè)數(shù)為232,也就是,我們可以將這232個(gè)數(shù),劃分為28個(gè)區(qū)域(比如用單個(gè)文件代表一個(gè)區(qū)域),然后將數(shù)據(jù)分離到不同的區(qū)域,然后不同的區(qū)域在利用bitmap就可以直接解決了。也就是說(shuō)只要有足夠的磁盤空間,就可以很方便的解決。 2).5億個(gè)int找它們的中位數(shù)。這個(gè)例子比上面那個(gè)更明顯。首先我們將int劃分為216個(gè)區(qū)域,然后讀取數(shù)據(jù)統(tǒng)計(jì)落到各個(gè)區(qū)域里的數(shù)的個(gè)數(shù),之后我們根據(jù)統(tǒng)計(jì)結(jié)果就可以判斷中位數(shù)落到那個(gè)區(qū)域,同時(shí)知道這個(gè)區(qū)域中的第幾大數(shù)剛好是中位數(shù)。然后第二次掃描我們只統(tǒng)計(jì)落在這個(gè)區(qū)域中的那些數(shù)就可以了。實(shí)際上,如果不是int是int64,我們可以經(jīng)過(guò)3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成224個(gè)區(qū)域,然后確定區(qū)域的第幾大數(shù),在將該區(qū)域分成220個(gè)子區(qū)域,然后確定是子區(qū)域的第幾大數(shù),然后子區(qū)域里的數(shù)的個(gè)數(shù)只有220,就可以直接利用direct addr table進(jìn)行統(tǒng)計(jì)了。密匙三:Bloom filter/BitmapBloom filter關(guān)于什么是Bloom filter,請(qǐng)參看此文:海量數(shù)據(jù)處理之Bloom Filter詳解。適用范圍:可以用來(lái)實(shí)現(xiàn)數(shù)據(jù)字典,進(jìn)行數(shù)據(jù)的判重,或者集合求交集基本原理及要點(diǎn):對(duì)于原理來(lái)說(shuō)很簡(jiǎn)單,位數(shù)組+k個(gè)獨(dú)立hash函數(shù)。將hash函數(shù)對(duì)應(yīng)的值的位數(shù)組置1,查找時(shí)如果發(fā)現(xiàn)所有hash函數(shù)對(duì)應(yīng)位都是1說(shuō)明存在,很明顯這個(gè)過(guò)程并不保證查找的結(jié)果是100%正確的。同時(shí)也不支持刪除一個(gè)已經(jīng)插入的關(guān)鍵字,因?yàn)樵撽P(guān)鍵字對(duì)應(yīng)的位會(huì)牽動(dòng)到其他的關(guān)鍵字。所以一個(gè)簡(jiǎn)單的改進(jìn)就是 counting Bloom filter,用一個(gè)counter數(shù)組代替位數(shù)組,就可以支持刪除了。還有一個(gè)比較重要的問(wèn)題,如何根據(jù)輸入元素個(gè)數(shù)n,確定位數(shù)組m的大小及hash函數(shù)個(gè)數(shù)。當(dāng)hash函數(shù)個(gè)數(shù)k=(ln2)*(m/n)時(shí)錯(cuò)誤率最小。在錯(cuò)誤率不大于E的情況下,m至少要等于n*lg(1/E)才能表示任意n個(gè)元素的集合。但m還應(yīng)該更大些,因?yàn)檫€要保證bit數(shù)組里至少一半為0,則m應(yīng)該=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對(duì)數(shù))。舉個(gè)例子我們假設(shè)錯(cuò)誤率為0.01,則此時(shí)m應(yīng)大概是n的13倍。這樣k大概是8個(gè)。注意這里m與n的單位不同,m是bit為單位,而n則是以元素個(gè)數(shù)為單位(準(zhǔn)確的說(shuō)是不同元素的個(gè)數(shù))。通常單個(gè)元素的長(zhǎng)度都是有很多bit的。所以使用bloom filter內(nèi)存上通常都是節(jié)省的。擴(kuò)展:Bloom filter將集合中的元素映射到位數(shù)組中,用k(k為哈希函數(shù)個(gè)數(shù))個(gè)映射位是否全1表示元素在不在這個(gè)集合中。Counting bloom filter(CBF)將位數(shù)組中的每一位擴(kuò)展為一個(gè)counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現(xiàn)次數(shù)關(guān)聯(lián)。SBF采用counter中的最小值來(lái)近似表示元素的出現(xiàn)頻率。問(wèn)題實(shí)例:給你A,B兩個(gè)文件,各存放50億條URL,每條URL占用64字節(jié),內(nèi)存限制是4G,讓你找出A,B文件共同的URL。如果是三個(gè)乃至n個(gè)文件呢?根據(jù)這個(gè)問(wèn)題我們來(lái)計(jì)算下內(nèi)存的占用,4G=232大概是40億*8大概是340億,n=50億,如果按出錯(cuò)率0.01算需要的大概是650億個(gè)bit?,F(xiàn)在可用的是340億,相差并不多,這樣可能會(huì)使出錯(cuò)率上升些。另外如果這些urlip是一一對(duì)應(yīng)的,就可以轉(zhuǎn)換成ip,則大大簡(jiǎn)單了。 同時(shí),上文的第5題:給定a、b兩個(gè)文件,各存放50億個(gè)url,每個(gè)url各占64字節(jié),內(nèi)存限制是4G,讓你找出a、b文件共同的url?如果允許有一定的錯(cuò)誤率,可以使用Bloom filter,4G內(nèi)存大概可以表示340億bit。將其中一個(gè)文件中的url使用Bloom filter映射為這340億bit,然后挨個(gè)讀取另外一個(gè)文件的url,檢查是否與Bloom filter,如果是,那么該url應(yīng)該是共同的url(注意會(huì)有一定的錯(cuò)誤率)。Bitmap 10、在2.5億個(gè)整數(shù)中找出不重復(fù)的整數(shù),注,內(nèi)存不足以容納這2.5億個(gè)整數(shù)。 方案1:采用2-Bitmap(每個(gè)數(shù)分配2bit,00表示不存在,01表示出現(xiàn)一次,10表示多次,11無(wú)意義)進(jìn)行,共需內(nèi)存232 * 2 bit=1 GB內(nèi)存,還可以接受。然后掃描這2.5億個(gè)整數(shù),查看Bitmap中相對(duì)應(yīng)位,如果是00變01,01變10,10保持不變。所描完事后,查看bitmap,把對(duì)應(yīng)位是01的整數(shù)輸出即可。 方案2:也可采用與第1題類似的方法,進(jìn)行劃分小文件的方法。然后在小文件中找出不重復(fù)的整數(shù),并排序。然后再進(jìn)行歸并,注意去除重復(fù)的元素。11、騰訊面試題:給40億個(gè)不重復(fù)的unsigned int的整數(shù),沒(méi)排過(guò)序的,然后再給一個(gè)數(shù),如何快速判斷這個(gè)數(shù)是否在那40億個(gè)數(shù)當(dāng)中? 方案1:oo,申請(qǐng)512M的內(nèi)存,一個(gè)bit位代表一個(gè)unsigned int值。讀入40億個(gè)數(shù),設(shè)置相應(yīng)的bit位,讀入要查詢的數(shù),查看相應(yīng)bit位是否為1,為1表示存在,為0表示不存在。密匙四、Trie樹/數(shù)據(jù)庫(kù)/倒排索引Trie樹適用范圍:數(shù)據(jù)量大,重復(fù)多,但是數(shù)據(jù)種類小可以放入內(nèi)存基本原理及要點(diǎn):實(shí)現(xiàn)方式,節(jié)點(diǎn)孩子的表示方式擴(kuò)展:壓縮實(shí)現(xiàn)。問(wèn)題實(shí)例:有10個(gè)文件,每個(gè)文件1G,每個(gè)文件的每一行都存放的是用戶的query,每個(gè)文件的query都可能重復(fù)。要你按照query的頻度排序。 1000萬(wàn)字符串,其中有些是相同的(重復(fù)),需要把重復(fù)的全部去掉,保留沒(méi)有重復(fù)的字符串。請(qǐng)問(wèn)怎么設(shè)計(jì)和實(shí)現(xiàn)? 尋找熱門查詢:查詢串的重復(fù)度比較高,雖然總數(shù)是1千萬(wàn),但如果除去重復(fù)后,不超過(guò)3百萬(wàn)個(gè),每個(gè)不超過(guò)255字節(jié)。 上面的第8題:一個(gè)文本文件,大約有一萬(wàn)行,每行一個(gè)詞,要求統(tǒng)計(jì)出其中最頻繁出現(xiàn)的前10個(gè)詞。其解決方法是:用trie樹統(tǒng)計(jì)每個(gè)詞出現(xiàn)的次數(shù),時(shí)間復(fù)雜度是O(n*le)(le表示單詞的平準(zhǔn)長(zhǎng)度),然后是找出出現(xiàn)最頻繁的前10個(gè)詞。適用范圍:大數(shù)據(jù)量的增刪改查基本原理及要點(diǎn):利用數(shù)據(jù)的設(shè)計(jì)實(shí)現(xiàn)方法,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 園區(qū)消防測(cè)試題及答案
- 幼教教師考試試題及答案
- 游戲消防車測(cè)試題及答案
- 影像科消防試題及答案
- 銀行組團(tuán)面試題目及答案
- 銀行小組面試題目及答案
- 智能家居解決決方案0520
- 行車法律法規(guī)試題及答案
- 信合銀行面試試題及答案
- 葡萄酒進(jìn)口關(guān)稅優(yōu)惠代理補(bǔ)充協(xié)議
- 漢heidenhain itnc用戶手冊(cè)探測(cè)循環(huán)
- 學(xué)習(xí)領(lǐng)會(huì)《在二十屆中央政治局第四次集體學(xué)習(xí)時(shí)的講話》心得
- 水稻聯(lián)合收割機(jī)使用與維護(hù)
- 供應(yīng)商考核評(píng)分表
- 無(wú)土栽培學(xué)(全套課件660P)
- 《表觀遺傳》教學(xué)設(shè)計(jì)
- 20千伏及以下配電網(wǎng)工程業(yè)主項(xiàng)目部標(biāo)準(zhǔn)化管理手冊(cè)
- GB/T 3683-2011橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強(qiáng)液壓型規(guī)范
- GB/T 3036-1994船用中心型蝶閥
- GB/T 18920-2020城市污水再生利用城市雜用水水質(zhì)
- GB/T 1220-1992不銹鋼棒
評(píng)論
0/150
提交評(píng)論